Trường hợp hai đường chéo vuông góc: Tứ_giác_nội_tiếp

Chu vi và diện tích

Đối với một tứ giác nội tiếp có 2 đường chéo vuông góc, giả sử giao điểm của đường chéo chia một đường chéo thành các đoạn có độ dài p1 và p2 và chia đường chéo khác thành các đoạn có độ dài q1 và q2 thì: (đẳng thức đầu tiên là Mệnh đề thứ 11 trong cuốn "Book of Lemmas" (tạm dịch: Cuốn sách về bổ đề) của Archimedes)

D 2 = p 1 2 + p 2 2 + q 1 2 + q 2 2 = a 2 + c 2 = b 2 + d 2 {\displaystyle D^{2}=p_{1}^{2}+p_{2}^{2}+q_{1}^{2}+q_{2}^{2}=a^{2}+c^{2}=b^{2}+d^{2}}

trong đó D là đường kính của đường tròn ngoại tiếp tứ giác. Điều này đúng bởi vì đường chéo là các dây vuông góc của một vòng tròn. Các phương trình này thể hiện rằng bán kính đường tròn ngoại tiếp R có thể được biểu diễn bằng

R = 1 2 p 1 2 + p 2 2 + q 1 2 + q 2 2 {\displaystyle R={\tfrac {1}{2}}{\sqrt {p_{1}^{2}+p_{2}^{2}+q_{1}^{2}+q_{2}^{2}}}}

hoặc, ở dạng của các cạnh của tứ giác, như

R = 1 2 a 2 + c 2 = 1 2 b 2 + d 2 . {\displaystyle R={\tfrac {1}{2}}{\sqrt {a^{2}+c^{2}}}={\tfrac {1}{2}}{\sqrt {b^{2}+d^{2}}}.}

Tương đương:

a 2 + b 2 + c 2 + d 2 = 8 R 2 . {\displaystyle a^{2}+b^{2}+c^{2}+d^{2}=8R^{2}.}

Do đó, theo định lý tứ giác của Euler, bán kính đường tròng ngoại tiếp có thể được biểu diễn theo các đường chéo p và q, và khoảng cách x giữa trung điểm các đường chéo:

R = p 2 + q 2 + 4 x 2 8 . {\displaystyle R={\sqrt {\frac {p^{2}+q^{2}+4x^{2}}{8}}}.}

Một công thức cho diện tích K của một tứ giác nội tiếp có hai đường chéo vuông góc ở dạng độ dài 4 cạnh thu được trực tiếp khi kết hợp định lý Ptoleme và công thức tính diện tích của một tứ giác nội tiếp có hai đường chéo vuông góc. Kết quả là

K = 1 2 ( a c + b d ) . {\displaystyle K={\tfrac {1}{2}}(ac+bd).}

Tính chất khác

Trong một tứ giác nội tiếp có hai đường chéo vuông góc, tâm đường tròn nội tiếp trùng với điểm mà các đường chéo giao nhau. [21]

  1. Định lý Brahmagupta cho rằng đối với một tứ giác nội tiếp có hai đường chéo vuông góc, đường vuông góc từ bất kỳ cạnh nào qua giao điểm của các đường chéo chia đôi cạnh phía đối diện. [21]
  2. Nếu một tứ giác có hai đường chéo vuông góc cũng nội tiếp, khoảng cách từ tâm đường tròn ngoại tiếp đến bất kỳ cạnh nào bằng một nửa chiều dài của phía đối diện. [21]
  3. Trong một tứ giác có hai đường chéo vuông góc, khoảng cách giữa trung điểm của các đường chéo bằng khoảng cách giữa tâm đừong tròn ngoại tiếp và giao điểm hai đường chéo. [21]

Ngược lại: Nếu tứ giác nội tiếp có tổng bình phương hai cạnh đối này bằng tổng bình phương hai cạnh đối kia tam giác đó thì hai đường chéo của nó vuông góc với nhau.( chứng minh : định lí 4 điểm )

Tài liệu tham khảo

WikiPedia: Tứ_giác_nội_tiếp http://www.artofproblemsolving.com/Forum/viewtopic... http://dynamicmathematicslearning.com/JavaGSPLinks... http://dynamicmathematicslearning.com/nine-point-q... http://www.imomath.com/othercomp/Journ/ineq.pdf http://www.mathalino.com/reviewer/derivation-formu... http://mathworld.wolfram.com/CyclicQuadrilateral.h... http://hydra.nat.uni-magdeburg.de/math4u/ineq.pdf http://aleph0.clarku.edu/~djoyce/java/elements/boo... http://forumgeom.fau.edu/FG2007volume7/FG200720.pd... http://forumgeom.fau.edu/FG2008volume8/FG200814.pd...